Cholinergic modulation of neocortical long-term potentiation in the awake, freely moving rat.
نویسندگان
چکیده
The neocortex has proven resistant to LTP induction using standard in vitro and acute, in vivo preparations. Because the neocortex is widely thought to be involved in long-term information storage, this resistance raises questions about the validity of LTP as a memory model. Recently, we have shown that the neocortex of freely moving rats reliably supports LTP, provided that the stimulation is spaced and repeated over days. The following experiments were designed to evaluate the neuromodulatory role played by cholinergic systems in the induction of LTP in this preparation. Chronically implanted rats received either low- or high-intensity LTP-inducing tetani in combination with the administration of either a cholinergic agonist or antagonist injected systemically. Potentiation was evidenced as amplitude changes in both early and late components of the evoked field potential, the former including population spikes. The cholinergic agonist facilitated LTP induction in the late component of both high- and low-intensity groups. The cholinergic antagonist blocked LTP induction in the early component of the high-intensity group. The possibility that there are component-specific modulatory effects of cholinergic agents on the induction of neocortical LTP is discussed.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملInteractions between LTP- and LTD-inducing stimulation in the sensorimotor cortex of the awake freely moving rat.
Bidirectional modifications in synaptic efficacy are central components in models of cortical learning and memory. More recently, the regulation of synaptic plasticity according to the history of synaptic activation, termed "metaplasticity," has become a focus of research on the physiology of memory. Here we explore such interactions between long-term potentiation (LTP) and long-term depression...
متن کاملP15: Hippocampus-Neocortical Communication in Learning
The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...
متن کاملSpatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats
Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...
متن کاملThe state dependency effect of morphine on memory by behavioral and electrophysiological methods in freely moving rats
Endogenous opioid system agonists exert amnestic effects in different models of memory. It has been suggested that these amnestic effects may be linked indirectly to state-dependent learning. Accordingly pre-training administration of morphine can impair the retrieval of learned tasks in a state dependent manner, which is reversible by pre test morphine administration. In this study, state depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 881 1 شماره
صفحات -
تاریخ انتشار 2000